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Modeling mitigation of influenza epidemics
by baloxavir
Zhanwei Du1, Ciara Nugent2, Alison P. Galvani3, Robert M. Krug 4 & Lauren Ancel Meyers 1,2,5✉

Influenza viruses annually kill 290,000–650,000 people worldwide. Antivirals can reduce

death tolls. Baloxavir, the recently approved influenza antiviral, inhibits initiation of viral

mRNA synthesis, whereas oseltamivir, an older drug, inhibits release of virus progeny.

Baloxavir blocks virus replication more rapidly and completely than oseltamivir, reducing the

duration of infectiousness. Hence, early baloxavir treatment may indirectly prevent trans-

mission. Here, we estimate impacts of ramping up and accelerating baloxavir treatment on

population-level incidence using a new model that links viral load dynamics from clinical trial

data to between-host transmission. We estimate that ~22 million infections and >6,000

deaths would have been averted in the 2017–2018 epidemic season by administering

baloxavir to 30% of infected cases within 48 h after symptom onset. Treatment within 24 h

would almost double the impact. Consequently, scaling up early baloxavir treatment would

substantially reduce influenza morbidity and mortality every year. The development of

antivirals against the SARS-CoV2 virus that function like baloxavir might similarly curtail

transmission and save lives.
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Influenza A and B viruses cause a highly contagious respiratory
disease in humans that kills 290,000–650,000 people world-
wide every year1. Vaccination is the primary means for con-

trolling influenza transmission but is hampered by the variable
efficacy and incomplete population coverage of annual vaccines,
and thus is not yet sufficient for preventing large annual epi-
demics. Antiviral medications can shorten the duration of
symptoms and reduce the likelihood of severe outcomes when
administered to infected individuals shortly after they develop
symptoms. Prior to 2018, the only approved influenza antivirals
were viral neuraminidase inhibitors2,3. Of these, only oseltamivir
(Tamiflu) can be taken orally, thereby facilitating its widespread
usage. Oseltamivir inhibits the release of progeny virus from the
cell surface, which is the last step in the production of infectious
virus. Multiple oseltamivir treatments over 5 consecutive days are
required to fully arrest virus production.

In 2018, a new oral antiviral, baloxavir (Xofluza), was approved
in the United States for use in adults4. Baloxavir inhibits an
early step in virus replication, the initiation of viral mRNA
synthesis5–7. This initiation step requires cap-snatching, a
mechanism in which the viral polymerase binds to the cap
structure (m7GpppNm) at the 5’ ends of pre-mRNAs, the nuclear
RNA precursors to cellular mRNAs, and then the endonuclease
enzyme in the polymerase itself cleaves the pre-mRNAs at a
position 10–14 bases downstream from the cap to generate the
capped RNA fragments that serve as primers to initiate viral
mRNA synthesis. Because baloxavir almost completely inhibits
the cap-dependent endonuclease, little or no initiation of viral
mRNA synthesis occurs, and little or no virus is produced.
Consequently, as predicted, baloxavir treatment of infected
patients almost totally inhibits virus production rapidly, within
24 h8. For this reason, only a single dose of baloxavir is needed to
block virus production and shorten symptoms.

In addition to reducing the duration of symptoms, influenza
antivirals can reduce infectiousness by shortening the period of
virus shedding. In fact, because baloxavir treatment rapidly inhibits
virus replication, virus shedding is shortened by 2–3 days. Conse-
quently, widespread baloxavir treatment is predicted to sub-
stantially reduce population-level incidence, analogous to the herd
effect attributed to vaccines9. Here, we estimate the impact of
increasing baloxavir treatment coverage and varying times of
treatment on population-level incidence using both clinical results
and a hierarchical mathematical model that links within-host
dynamics of viral load to between-host transmission. Our results
indicate that scaling up and accelerating baloxavir treatment would
substantially reduce influenza morbidity and mortality every year.

Results and discussion
Impact of antiviral treatment on the cell-to-cell proliferation of
influenza. Our within-host model assumes that infected patients
have an initial load of drug-sensitive virus that increases via
replication and decreases via immune response and antiviral
treatment10,11 (Supplementary Fig. 1). We estimated the efficacy
with which oseltamivir and baloxavir inhibit viral replication by
fitting the model to the results of a recent clinical trial8 that
measured the viral loads of 1014 influenza virus-infected patients
after treatment with oseltamivir, baloxavir, or a placebo (Table 1).
Our model produces viral titer estimates similar to the clinical
data, and, like the clinical data, shows that baloxavir inhibits
influenza virus replication more effectively than oseltamivir
(Fig. 1). Within 1 day of initiating baloxavir or oseltamivir
treatment, virus load decreases by an estimated 84% or 56%,
respectively, compared with an expected reduction in untreated
cases of 39%. The observed differences in the time between
symptom onset and the initiation of treatment for patients in the
clinical trial accounts for most of the observed variability in virus
replication (Fig. 1, standard deviations). We used the fitted model
to predict the effectiveness of drug treatment scenarios beyond
those tested in the clinical trial, including the initiation of
baloxavir or oseltamivir regimens at different times after symp-
tom onset (Supplementary Fig. 3).

Impact of baloxavir treatment on the transmission dynamics of
influenza. We incorporated this viral replication model into a
stochastic individual-based model of influenza transmission that
tracks the daily evolution of infectiousness with disease progres-
sion. The infectiousness of a case at any given time depends on
viral load, treatment status, and baseline transmission rates esti-
mated from influenza surveillance data12,13 (Supplementary
Table 2). Consistent with previous studies14,15, we assume a
logarithmic relationship between viral load and infectiousness
(Fig. 2). Unless otherwise specified, each course of treatment is
initiated within the first 48 h of symptom onset, with the exact
treatment times following the distribution reported in the recent
clinical trial8 (Table 1). A day after initiating treatment with
baloxavir or oseltamivir, the model projects that infectiousness is
reduced by 95% or only 21%, respectively, relative to a compar-
able untreated patient (Fig. 2a). In addition, baloxavir-treated
patients are likely to become non-infectious within two days,
whereas oseltamivir-treated patients are predicted to remain
infectious for ~4 or 5 days.

To project the population-level impacts of both scaling up and
accelerating antiviral treatment, we fit our model to the

Table 1 Summary of key parameter estimates from fitting within-host and between-host models to data.

Parameter Median 95% CI lower 95% CI upper

Antiviral efficacy ϵ for baloxavir 0.9997 0.9996 0.9999
Antiviral efficacy ϵ for oseltamivir 0.89 0.88 0.90
Initial sensitive viral load V0 (TCID50/ml) 258.2 3.3a 2268.9a

Basic reproduction number R0 in 2016–2017 season 1.09 1.06 1.11
Basic reproduction number R0 in 2017–2018 season 1.15 1.12 1.17
Basic reproduction number R0 in 2018–2019 season 1.10 1.08 1.13
Baseline distribution of treatment initiation time, G0–48 (hours after symptom onset, truncated at 48 h) G(4.0, 6.3)
Accelerated distribution of treatment initiation times, G0–24 (hours after symptom onset, truncated at 24 h) G(4.0, 6.3)/2
Delayed distribution of treatment initiation times, G24–48 (hours after symptom onset, compressed to
24–48 h window)

G(4.0, 6.3)/2+ 24

Distribution of time lag between infection and symptom onset, L (hours) 24aL(0.37,0.41)

aFor estimates derived by simulated annealing, we provide 95 percentile range rather than confidence intervals.
Viral replication and antiviral efficacy are estimated via simulated annealing46 and approximate Bayesian computation38,39,47 fitting of deterministic within-host model to clinical trial data;8 season-
specific transmission rates are estimated via approximate Bayesian computation38,39 fitting of stochastic population-level influenza transmission model (Supplementary Section 1) to US seasonal
influenza incidence data12. Parameters for distributions of time between infection and symptom onset (lognormal) and from symptom onset to treatment (gamma) were estimated by the interior-point
algorithm fitting of clinical trial data8. The key parameter estimates of within-host model and between-host model are summarized here, whereas others are in Supplementary Tables 2 and 3.
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2017–2018 influenza epidemic in the United States, a severe
epidemic which resulted in an estimated 63.3 million people
infected, over 900,000 hospitalizations and more than 79,000
deaths16. In the absence of scaling up antiviral coverage, the
timing and magnitude of the epidemiological trajectories
projected by the model match the 2017–2018 seasonal epidemic
(Fig. 3a). Treatment of 30% of infected cases with baloxavir or
oseltamivir within 48 h after symptoms onset reduces the
expected number of influenza infections throughout the virus
season by 38% or 26%, respectively. We estimate the reduction in
the number of overall infections at other treatment levels, ranging
from 10% to 50% (Fig. 3a). As the percent of cases receiving
antiviral treatment is increased, the estimated herd effect
increases as reflected by a proportional decline in expected
incidence. Baloxavir treatment is predicted to reduce the overall
burden of influenza more than oseltamivir treatment across all
treatment rates. If half of all cases are treated, baloxavir or
oseltamivir are expected to reduce incidence by 58% or 39%,
respectively. Similar herd effects are estimated for models that are
fit to incidence data from the 2016–2017 and 2018–2019
influenza seasons in the United States (Supplementary Figs. 4
and 5). For each intervention scenario in the 2017–2018 season,
we also calculated the basic reproduction number (R0), the
average number of secondary infections generated by a typical
infectious case at the outset of the epidemic (Supplementary
Table 2). For example, treatment of 30% of cases with baloxavir
would reduce R0 from a 2017–2018 baseline of ~1.15 (95% CI
1.12, 1.17) to ~1.08 (95% CI 1.05, 1.10).

Using our model based on the 2017–2018 influenza season, we
consider the population-level impacts of treatment initiation time
within the 48 h period after symptom onset. Both the efficacy of
baloxavir treatment and the increased benefit of baloxavir relative
to oseltamivir are greatest in the first 24 h period (Fig. 4a). For a

single infected individual, baloxavir treatment administered
within the first 24 h period is expected to achieve nearly double
the reduction in infectiousness (87%) than treatment adminis-
tered within the second 24 h period. On a population level,
baloxavir treatment within the first 24 h after symptoms onset
results in a significantly greater reduction in total incidence than
treatment within the second 24 h window following symptom
onset (Fig. 4b). At the 30% and 50% case treatment rates, the
early baloxavir treatment scenario is expected to avert 3.8 and 5.3
million infections more than the delayed treatment scenario,
respectively. We also evaluated the distribution of treatment times
reported in the baloxavir clinical trial:8 approximately equal
numbers of patients treated in the 0–24 and 24–48 h time periods
following symptom onset. This mixture is expected to reduce
transmission to almost the same extent as accelerating all
treatment to within 24 h of symptom onset (Fig. 4b). We restrict
our analysis to treatment initiated within the initial 48 h window,
given that later treatment will only negligibly impact incidence
and that treatment within 48 h is clearly indicated17,18. In
addition, treatment within 48 h is increasingly feasible with the
expansion of telemedicine and online clinics (e.g., through the
Xofluza website19 and insurance providers20).

Finally, we estimate influenza-associated mortality and mor-
bidity averted by scaling up baloxavir or oseltamivir treatment
(Fig. 4c). Specifically, we calculate the reduction in Disability-
Adjusted Life Years (DALYs)21 between simulated 2017–2018
epidemics with and without scaling up antiviral treatment. For
averted cases, we use DALY estimates22 that include losses due to
influenza-associated hospitalization (58%) outpatient care (4%)
and mortality (38%). Clinical trial8 results indicate that baloxavir
and oseltamivir reduce the duration of illness by at least 23 h. As
the treatment rate increases, the number of courses of treatment
required to avert one DALY decreases with baloxavir treatment to
a greater extent than with oseltamivir treatment (Fig. 4c). For
example, when only 20% of cases are treated, every 10.6 courses
of baloxavir treatment is expected to avert one DALY, whereas
18.6 courses of oseltamivir treatment are needed to avert one
DALY. Hence, each course of baloxavir or oseltamivir treatment
is expected to prevent the loss of ~5 weeks or ~3 weeks of healthy
life, respectively.

Proactive case identification and antiviral treatment can
significantly mitigate the burden of seasonal influenza in the
United States. Using an influenza transmission model fitted to a
recent clinical trial and incidence reports from the 2017 to
2018 season, we find that baloxavir offers individual-level and
population-level benefits to a greater extent than oseltamivir. For
a reasonably attainable scenario in which only 20% of cases
receive baloxavir treatment within 48 h of symptom onset, the
estimated herd effect is a 25% reduction in overall incidence,
corresponding to ~15 million infected cases averted in the United
States, potentially saving ~4200 lives. With a higher treatment
rate (50%), the expected number of cases averted increases to ~37
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Fig. 2 Early antiviral treatment reduces the infectiousness of influenza
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oseltamivir compared with treatment with placebo. Patients were assumed
to be treated within 48 h of symptom onset, with the same scheduling as in
the clinical trial8. Lines and shading indicate medians and interquartile
ranges across 1014 stochastic simulations, corresponding to the sample
sizes of 427, 377, and 210 for the baloxavir, oseltamivir, and placebo clinical
trial groups, respectively.
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million, potentially saving ~10,200 lives. Our results indicate that
optimal reduction of overall infection occurs when a significant
number of infected cases are treated with baloxavir within 24 h
after symptom onset. Consequently, efforts to accelerate the
diagnosis and treatment of influenza infections with antivirals
such as baloxavir, including potentially cost-saving telemedi-
cine23, should have far-reaching public health benefits. We expect
that ongoing COVID-19 responses will vastly expand the reach
and speed of telehealth and increase public awareness of
antivirals. Thus, antiviral treatment of 20–30% of infected
patients may be attainable in future influenza epidemics.

Influenza A viruses also cause periodic widespread pandemics
usually resulting in higher mortality rates24. The relative benefits
of mass treatment with oseltamivir and baloxavir that we have
estimated for seasonal influenza epidemics should extend to
pandemics, although the herd effect would likely diminish for
more rapidly spreading viruses25–28. Even at the higher R0 values
characteristic of rapidly spreading pandemic viruses, baloxavir
treatment is predicted to yield a higher herd effect than
oseltamivir (Supplementary Fig. 6). Seminal studies of the
mitigation of influenza pandemics suggest that oseltamivir-
based interventions can only partially mitigate a pandemic, with
the proportion of cases averted inversely related to the treatment

rate, speed of treatment, and transmission rate of the pandemic
virus29,30. Our new estimates of time-dependent baloxavir and
oseltamivir efficacy against virus spread are qualitatively con-
sistent with these prior studies and can be readily applied to the
evaluation and updating of antiviral-based mitigation of
pandemics.

The critical importance of mass treatment by effective
antivirals is exemplified by the global pandemic (COVID-19)
caused by a novel coronavirus SARS-CoV2. As of April 2020,
COVID-19 has spread to ~200 countries, infected ~2.5 million
people, and claimed the lives of more than 170,000 people31. No
antivirals specific for COVID-19 are currently available to treat
patients and mitigate the spread of this virus during the time that
an effective vaccine is being developed and deployed. Our results
indicate that the rapid development of an antiviral against
COVID-19 that, like baloxavir, quickly and almost completely
inhibits COVID-19 virus replication could vastly reduce morbid-
ity and mortality worldwide. However, the likelihood of pre-
symptomatic transmission32 and persistent disparities in access to
healthcare may hinder the efficacy of future antiviral campaigns.

We assume that the efficacy and timing of antiviral treatment
estimated from a clinical trial8 applies to the population as a whole,
and have not modeled possible biases in the data with respect to
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disease severity or timing of treatment. Future epidemiological
studies and clinical trials may allow us to address such biases and
capture two key complexities not yet considered in our models.
First, we have not considered that viral kinetics and the efficacy of
treatment may substantially vary across age groups and risk groups,
as demonstrated by others33. We expect that incorporating such
heterogeneity will enhance intervention assessments and the
prioritization of medical resources, but not qualitatively change
the results of this analysis. Second, we do not yet model the
evolution and transmission of baloxavir-resistant viruses, which
may alter the population-level benefits of ramping up treatment
rates. In recent clinical trials, baloxavir-resistant viruses emerged in
23% of baloxavir-treated children34 and 9.7% of baloxavir-treated
adults8, and in some cases prolonged symptoms and viral shedding.
Combination therapy with baloxavir and a neuraminidase inhibitor
(oseltamivir) may prevent the generation of baloxavir-resistant
viruses, whereas preserving the strong herd effect provided by
baloxavir treatment. Clinical evaluation of this combination therapy
is currently underway with results expected in March 2021 (ref. 35).
A prior study provides a flexible framework for estimating the
efficacy of combination therapy depending on the timing of
administration36. As another caveat, we follow prior studies14,15 in
assuming that the infectiousness of a case is logarithmically related
to their viral load. Although there is little doubt that infectiousness
and viral load are positively correlated, transmission also depends
on contact patterns during the time that an individual is
infectious37. We do not consider infection-mediated changes in
contact rates, such as when individuals choose to stay home from
school or work when ill.

In conclusion, our results indicate that both the scaling up and
acceleration of baloxavir treatment would avert substantial
influenza morbidity and mortality every year. Even modest
baloxavir treatment rates can potentially spare millions of people
from influenza virus infections during epidemics, thereby
substantially reducing hospitalizations, morbidity, and deaths.
This prediction provides an added incentive for accelerated
healthcare delivery systems such as telemedicine and the
development of rapid, sensitive assays for influenza virus infection.

Methods
Our hierarchical method includes three steps (Supplementary Table 1): (i) fitting a
within-host model of antiviral-induced inhibition of influenza virus replication to
clinical trial data to estimate the impact of treatment on the infectiousness of
patients (2) fitting a between-host model of person-to-person virus transmission to
seasonal influenza surveillance data to estimate influenza transmission rates, and
(3) incorporate both sets of estimates into our simulation model to project the
impacts of expanding and accelerating antiviral treatment during emerging
epidemics.

Within-host model of influenza A replication dynamics. We applied a published
model that includes viral suppression by both the immune response and antiviral
treatment10,11, as given by dU/dt=−bUV; dF/dt= bUV−δF; dZ/dt= rZ; dV/dt=
(1−ϵ)pF-cV-kZV. The variables U, F, Z, and V represent the numbers of uninfected
target cells, the numbers of infected target cells, the intensity of the immune response
(i.e., antibody levels), and the amount of free virus (in TCID50/ml), respectively. The
parameters p, c, b, r, and ϵ denote the viral replication rate, viral death rate, cell
infection rate, growth rate of the immune response, and the antiviral efficacy. Using
published estimates for the initial values of F and U10, we applied simulated annealing
and approximate Bayesian computation38,39 to fit the model to clinical trial data8 to
estimate all model parameters. We assumed that the time from infection to symptom
onset follows a lognormal distribution, L, and the time from symptom onset to
treatment follows a gamma distribution truncated at 48 h, G0–48 (ref. 40) the two
distributions were estimated from data provided in refs. 8,41 using the interior-point
method to minimize the root-mean-square error (Supplementary Fig. 2). We do not
explicitly consider other sources of heterogeneity in viral replication or immune
response rates. Although most of the patients in the trial were infected by influenza A
viruses, ~10% were infected by influenza B viruses. When we consider the reduced
efficacy of baloxavir against influenza B viruses relative to influenza A viruses42, the
predictions are relatively unchanged (Supplementary Fig. 7). Following refs. 14,15, we
assume that infectiousness is a logarithmic function of viral load, as given by 1�
e�log10VðtÞ=100 where V(t) denotes the virus load at time t since infection

(Supplementary Section 2). To estimate total reduction in infectiousness attributable
to treatment, we calculate the area between the infectiousness curves estimated for
placebo and treatment throughout the entire period of viremia.

Between-host influenza transmission models. Using approximate Bayesian
computation38,39, we fit a deterministic compartmental susceptible-exposed-
symptomatic-recovered (SEYR) model43 to incidence time series for the
2016–2017, 2017–2018, and 2018–2019 influenza seasons in the United States to
estimate seasonal transmission parameters (Table 1 and Supplementary Table 3).
Following refs. 44,45, flu incidence is estimated as the product of CDC-reported
ILINet activity and WHO lab percent positive influenza tests12,13. We then
incorporated viral replication dynamics and antiviral treatment into a stochastic
agent-based version of the fitted SEYR model (Supplementary Section 3). We
replace the discrete exposed and symptomatic states with continuously changing
infectiousness from the moment of infection that is governed by our within-host
model. Exposed individuals become symptomatic (and thus eligible for treatment)
according to L; treated cases obtain their first dose within a 48 h window following
distribution G0–48 (unless otherwise specified); symptomatic recover when their
virus load falls below zero yielding average infectious periods of 9, 4, and 7 days, as
infection for untreated, baloxavir-treated, and oseltamivir-treated cases, respec-
tively (assuming treatment times follow G0–48). The force of infection (the prob-

ability that a susceptible individual becomes exposed) is given by λ ¼
P

j2Y ∪T βjðtÞ
N ,

where N is the population size and βj(t) is the transmission rate of the jth infectious
individual (symptomatic or treated) at time t, which is determined by the product
of a population-wide scaling factor Φ estimated from seasonal influenza incidence
data and the individual’s infectiousness at time t based on the within-host viral load
model. Supplementary Section 6 addresses the assumptions and robustness of the
model with respect to influenza virus type.

Estimating epidemiological quantities from simulation data. R0: To obtain the
R0 of a single simulation, we calculate the average number of secondary cases
produced by all individuals infected during the first week. For each scenario, we
compute the mean and 95% confidence interval for R0 over 100 stochastic simu-
lations (Supplementary Section 4).

Treatment effects. To estimate the epidemiological benefits of various interven-
tions, we conduct pairwise experiments in which we repeatedly run baseline and
treatment simulations in tandem, assuming a total population of 10,000. For each
pair i, we record the difference in total incidence between the baseline and treat-
ment simulations, di= I0− It, the total number of cases treated in the treatment
simulation ni. For each treatment scenario, we report medians and other dis-
tributional statistics over 1000 pairs of simulations. To obtain the expected number
of cases averted on a national-scale in the United States, we multiply the median
value of di/I0 by a CDC reported estimated for number of infections during the
2017–2018 influenza season12,13.

DALYs averted. To estimate the DALYs averted by mass antiviral treatment, we
again pair baseline and treatment simulations. To translate infections averted into
healthy life years gained, we apply a published model22 that considers US age-
specific risks, disability weights, and durations of clinical outcomes. To quantify the
direct benefits for treated cases, we estimate the years averted owing to alleviation
of influenza symptoms using baloxavir or oseltamivir8 (Supplementary Section 5).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The clinical trial data used is publicly available in ref. 8. All other data are available from
the corresponding author upon reasonable requests.

Code availability
Code developed R (Version 3.6.3) and Matlab (Matlab R2018b) for both the within-host
and between-host models and for estimating epidemiological parameters are available
from github (https://github.com/MeyersLabUTexas/baloxavir).
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