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Abstract

Within-host model specified by viral dynamic parameters is a mainstream tool to

understand SARS-CoV-2 replication cycle in infected patients. The parameter uncer-

tainty further affects the output of themodel, such as the efficacy of potential antiviral

drugs. However, gathering empirical data on these parameters is challenging. Here, we

aim to conduct a systematic review of viral dynamic parameters used in within-host

models by calibrating themodel to the viral load datameasured fromupper respiratory

specimens.Wesearched thePubMed, EmbaseandWebof Sciencedatabases (between

1 December 2019 and 10 February 2022) for within-host modelling studies. We

identified seven independent within-host models from the above nine studies, includ-

ing Type I interferon, innate response, humoral immune response or cell-mediated

immune response. From these models, we extracted and analyse seven widely used

viral dynamic parameters including the viral load at the point of infection or symp-

tom onset, the rate of viral particles infecting susceptible cells, the rate of infected

cells releasing virus, the rate of virus particles cleared, the rate of infected cells cleared

and the rate of cells in the eclipse phase can become productively infected. We identi-

fied seven independent within-host models from nine eligible studies. The viral load at

symptomonset is 4.78 (95%CI:2.93, 6.62) log(copies/ml), and the viral load at the point

of infection is −1.00 (95% CI:−1.94, −0.05) log(copies/ml). The rate of viral particles

infecting susceptible cells and the rate of infected cells cleared have the pooled esti-

mates as−6.96 (95%CI:−7.66,−6.25) log([copies/ml]–1 day–1) and0.92 (95%CI:−0.09,

1.93) day–1, respectively. We found that the rate of infected cells cleared was associ-

ated with the reported model in the meta-analysis by including the model type as a

categorical variable (p < .01). Joint viral dynamic parameters estimates when parame-

terizing within-host models have been published for SARS-CoV-2. The reviewed viral

dynamic parameters can be used in the same within-host model to understand SARS-

CoV-2 replication cycle in infected patients and assess the impact of pharmaceutical

interventions.
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1 INTRODUCTION

Cases of COVID-19 were first reported in Wuhan, China, in late

December 2019 and rapidly emerged in cities throughout the world

(The Washington Post, 2020). As of 3 April 2021, 491 million COVID-

19 cases have been reported in over 200 countries or territories and

6.15 million deaths (WHO, 2020). Five variants of concern (VOC),

together with eight variants of interest, have already been identified

by WHO (WHO, 2022), with the potential to be more transmissible

(Davies et al., 2020; Leung et al., 2021; Volz et al., 2021) and evade

immunity acquired through prior infection or vaccination (Wang et al.,

2021).

The health burden increases along with the virus continuing its

global march outward. Mathematical models could deepen our under-

standing of the epidemiological impact of non-pharmaceutical inter-

ventions (such as wearing masks and social distancing) and the vaccine

effectiveness (Vespignani et al., 2020) in the population level, and also

the SARS-CoV-2 replication cycle of viruses at the within-host level

(Challenger et al., 2022). However, it is challenging to estimate viral

dynamic parameters, such as the rate of viral particles infecting suscep-

tible cells and the rate of infected cells releasing virus, from empirical

observations.

Motivated by the availability of virus load within the host measured

from upper respiratory specimens after symptom onset, viral dynamic

parameters can be estimated by calibrating the within-host model to

the viral load data. We conduct a systematic review of viral dynamic

parameters estimated in the fitted within-host models which charac-

terize the dynamic of target cells infected by SARS-CoV-2 and the

dynamic of SARS-CoV-2 replication.

2 MATERIALS AND METHODS

2.1 Data source and searches

Weperformeda systematic reviewof peer-reviewed studies onwithin-

hostmodels of SARS-CoV-2 inPubMed, Embase andWebof Science on

10 February 2022. We searched studies in the above three databases

with a combination of the following search terms, with no restriction

on publication language: (‘SARS-CoV-2’, ‘COVID-19’, ‘COVID 2019’,

‘coronavirus 2019’ or ‘novel coronavirus’) and (‘within-host’, ‘in-host’,

‘withinhost’ or ‘inhost’). The searched studies were set to be published

between 1December 2019 and 10 February 2022.

2.2 Study selection

We (Z. W. D. and S. Q. W.) assessed eligible studies, extracted relevant

data and conducted cross-checked. Conflicts over the study selection

were resolved by another researcher (Y. B.).Weexcluded studies based

on screening titles and abstracts if theywere (1) duplicate publications;

(2) reviews; (3) non-modelling studies; (4) not conducted in humans.

Then, we further excluded studies based on screening full texts if: (1)

thewithin-hostmodels are not themain topic; (2) the primary outcome

is not the viral loadmeasured from upper respiratory specimens; (3) all

virus dynamic parameters arebasedon simple assumptions for numeri-

cal simulations.We reported studies following thePreferredReporting

Items for Systematic Reviews andMeta-Analyses (PRISMA) guidelines.

2.3 Data extraction and analysis

Information was extracted on the viral dynamic parameters coupled

with the corresponding 95% confidence interval (CI). We use the I2

index to assess heterogeneity between studies into the following three

categories: I2 < 25% (low heterogeneity), I2= 25–75% (average het-

erogeneity) and I2 > 75% (high heterogeneity). Because of the high I2

value thatwas calculated inour results, aswell as the significanceof the

CochranQ test, a random-effects model was further used to perform a

meta-analysis in this study. Analyseswere conducted inR version4.1.1.

3 RESULTS

We identified 1106 studies through the electronic search of the

databases between 1 December 2019 and 10 February 2022 (386,

PubMed; 358 Embase; and 362,Web of Science). 459 studies left after

excluding duplicates. After 391 studies were excluded based on titles

and abstracts screening, we retrieved 68 studies eligible for the full-

text screening. Next, after we excluded 59 studies based on full-text

screening, nine studies met the inclusion criteria and were included in

the systematic review (Figure 1 and Table 1).

We identified seven independent within-host models from the

above nine studies (Figure S1). Uninfected cells enter an eclipse state

or an infected state after infection. A portion of infected cells repro-

duce viruses that are contagious or not, which may be blocked by

Type I interferon, innate response, humoral immune response and

cell-mediated immune response. The studies were published during

the COVID-19 pandemic and the empirical virus load data were col-

lected from five countries, including Germany, Singapore, China, Korea

and America. We summarize seven widely used viral dynamic param-

eters from these studies and estimate the mean, 95% CI (Figure 2

and Table S1). Specifically, the viral load at symptom onset, V(0)$, is

4.78 (95%CI:2.93, 6.62) log(copies/ml) in threemodels from four stud-

ies (Iwanami et al., 2021; Jenner A.L. et al., 2021; Jeong et al., 2021;

Kim K.S. et al., 2021), and the viral load at the point of infection,

V(0)&, is −1.00 (95% CI:−0.94, −0.05) log(copies/ml) in three models

from three studies (Hernandez-Vargas and Velasco-Hernandez, 2020;

Czuppon P. et al., 2021; Fatehi et al., 2021) (Figure 2(a)). The rate

of viral particles infecting susceptible cells (virus infection rate, β) is
−4.97 (95% CI:−9.77, −0.16) log([copies/ml]−1 day−1) in six models

from eight studies (Hernandez-Vargas and Velasco-Hernandez, 2020;

Fatehi et al., 2021; Iwanami et al., 2021; Jenner A.L. et al., 2021;

Jeong et al., 2021; Ke et al., 2021; Kim K.S. et al., 2021; Sadria M.

and Layton A.T., 2021) (Figure 2(b)), with pooled estimates of −6.96

(95% CI:−7.66, −6.25) log([copies/ml]−1 day−1) (Table S1). The rate
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F IGURE 1 PRISMA flow diagram for searching and selecting studies in the systematic review

of infected cells releasing virus (virus replication rate, p) is 0.77 (95%

CI:−5.39, 6.94) log((copies/ml day–1 cell–1) in three models from three

studies (Hernandez-Vargas and Velasco-Hernandez, 2020; Czuppon P.

et al., 2021; Fatehi et al., 2021) (Figure 2(c)). The rate of virus par-

ticles cleared (virus clearance rate, c) is 5.19 (95% CI:−3.42, 13.81)

day−1 in fourmodels from five studies (Hernandez-Vargas andVelasco-

Hernandez, 2020; Czuppon P. et al., 2021; Fatehi et al., 2021; Jenner

A.L. et al., 2021; Ke et al., 2021) (Figure 2(d)). The rate of infected

cells cleared (infected cell clearance rate, δ) is 0.88 (95% CI:−0.25,

2.02) day−1 in seven models from nine studies (Hernandez-Vargas and

Velasco-Hernandez, 2020; Czuppon P. et al., 2021; Fatehi et al., 2021;

Iwanami et al., 2021; Jenner A.L. et al., 2021; Jeong et al., 2021; Ke

et al., 2021; Kim K.S. et al., 2021; Sadria M. and Layton A.T., 2021)

(Figure 2(e)), with pooled estimates of 0.92 (95%CI:−0.09, 1.93) day−1.

The rate of cells in the eclipse phase can become productively infected

(transition rate from the eclipse phase to the productively infected, k) is

3.75 (95%CI:−0.04, 7.54) day−1 in fivemodels from five studies (Czup-

pon P. et al., 2021; Fatehi et al., 2021; Jenner A.L. et al., 2021; Jeong

et al., 2021; Ke et al., 2021) (Figure 2(f)). Using the random-effects

model, we estimated the rate of viral particles infecting susceptible

cells (virus infection rate, β) and the rate of virus particles cleared (virus
clearance rate, c) have the pooled estimates as −6.96 (95% CI:−7.66,

−6.25) log([copies/ml]−1 day−1) and 0.92 (95% CI:−0.09, 1.93) day−1,

respectively (Figures S2 and S3 and Table S1).

High heterogeneity of the rate of infected cells cleared (infected

cell clearance rate, δ) were reported among the included studies with
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F IGURE 2 Estimates of parameters of SARS-CoV-2within-host model. The dots and error bars demonstrate the estimatedmean and 95%
confidence interval, respectively, from seven independent within-host models from nine studies (Figure S1 and Table 1). (a) The viral load at
symptom onset or at the point of infection (V(0)$ or V(0)&). (b) The rate of viral particles infecting susceptible cells (virus infection rate, β). (c) The
rate of infected cells releasing virus (virus replication rate, p). (d) The rate of virus particles cleared (virus clearance rate, c). (e) The rate of infected
cells cleared (infected cell clearance rate, δ). (f) The rate of cells in the eclipse phase can become productively infected (transition rate from the
eclipse phase to the productively infected, k)

respect to models studied (I2 = 92%, p < .01) (Figure S4). To explore

the potential association between the within-host models and the rate

of infected cells cleared (infected cell clearance rate, δ), we conducted
the meta-regression analysis for this parameter. We found that the

value of this parameter summarized in seven models from nine studies

(Hernandez-Vargas and Velasco-Hernandez, 2020; Czuppon P. et al.,

2021; Fatehi et al., 2021; Iwanami et al., 2021; Jenner A.L. et al., 2021;

Jeong et al., 2021; Ke et al., 2021; Kim K.S. et al., 2021; Sadria M. and

LaytonA.T., 2021)was associatedwith the reportedmodel in themeta-

analysis by including the model type as a categorical variable (p < .01)

(Figure S4). This may be because of the model-specific differences in

characterizing the viral replication and clearance.

4 DISCUSSION

The future of the pandemic is uncertain given the continuing emer-

gence of new variants (Wang et al., 2021). Within-host modelling

could help to characterize the transmission dynamics within a host.

We performed a systematic review andmeta-analysis of the published

estimates of viral dynamic parameters in the within-host models.

Antivirals for SARS-CoV-2 were initially developed by repurpos-

ing approved therapies for other diseases that did not require extra

clinical trials. Eight SARS-CoV-2 treatments have been licensed by

the United States Food and Drug Administration (US FDA) for use

in the United States as of 25 March 2022 (Zimmer et al., 2020).

Remdesivir was originally developed to treat Ebola and Hepati-

tis C (Zimmer et al., 2020; Gottlieb et al., 2022), which was the

first repurposed and approved drug by US FDA in October 2020

and had treated over nine million patients around the world by

December 2021 (Gilead Sciences, Inc., n.d.). Another antiviral against

SARS-CoV-2 infections, Molnupiravir, got US FDA emergency use

authorization on 23 December 2021 (Merck & Co., Inc., 2021), which

could reduce the risk of hospitalization by 30% (Food andDrug Admin-

istration, 2021). Paxlovid (combination of nirmatrelvir and ritonavir)

received the US FDA emergency authorization on 22 December 2021,
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with the reduction of hospitalization risks by 88% (Hammond et al.,

2022).

Within-host modelling provides a framework to study the impacts

of antiviral therapy on the transmission dynamics of SARS-CoV-2.

COVID-19 can be treated mainly in one of two ways (Fatehi et al.,

2021): that inhibits virus production (e.g., Remdesivir (Beigel et al.,

2020),Molnupiravir (Bai et al., 2022)) and convalescent plasma therapy

(Duan et al., 2020). The emergence of COVID-19 variants, on the other

hand, makes rigorous evaluation of effective treatment procedures

challenging in clinical trials, highlighting the value of mathematical

within-host models. The seven study models in this review could be

used to evaluate the efficacy of antivirals against SARS-CoV-2 virus,

for example, the target cell limited model with eclipse phase was

used to evaluate the impact of antiviral treatment timing on reducing

SARS-CoV-2 viral load for Remdesivir (Gonçalves et al., 2020), and the

standard target cell limited model was used to evaluate the effect of

Molnupiravir for oral treatment ofCOVID-19 (Bai et al., 2022). Regard-

ing the CP therapy, its impact on viral dynamics could be modelled by

other models with immune response (Fatehi et al., 2021), which is con-

sidered to be effective against COVID-19 with limited side effects in

clinical trials (Duan et al., 2020). To model viral transmission, the infec-

tiousness of an individual is mainly linked to the viral load into three

types of viral load-infectiousness coupling functions: logarithmic, sig-

moid and linear (Handel and Rohani, 2015; Néant et al., 2021). The

seven within-host models could all provide insights into the efficacy

of different treatment starts to combat the COVID-19 pandemic by

evaluating the viral load dynamics over time. The parameter uncer-

tainty analysis on the impacts of antiviral therapy could provide more

information before using the results tomake a decision.

We provide an overview of the limitations of our study. First, those

studies only study the wide-type SARS-CoV-2 virus, with no VOC

included. Second, most of the eligible studies do not account for the

difference between different age groups and risk groups, and the wan-

ing vaccine-derived immunity and re-infection, which may introduce a

bias if directly used for variants. Third, the pooled parameter values

would be preferable to target wide-type viruses without vaccination

and natural infection.

5 CONCLUSION

Joint viral dynamic parameters estimateswhen parameterizingwithin-

host models have been published for SARS-CoV-2, with models asso-

ciated with the reported estimates of the rate of infected cells cleared.

The reviewedviral dynamic parameters canbeused in the samewithin-

host model to understand SARS-CoV-2 replication cycle in infected

patients and assess the impact of pharmaceutical interventions.
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