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Abstract

Targeting surveillance resources toward individuals at high risk of early infection can accelerate the detection of emerging outbreaks.
However, it is unclear which individuals are at high risk without detailed data on interpersonal and physical contacts. We propose a
data-driven COVID-19 surveillance strategy using Electronic Health Record (EHR) data that identifies the most vulnerable individuals
who acquired the earliest infections during historical influenza seasons. Our simulations for all three networks demonstrate that the
EHR-based strategy performs as well as the most-connected strategy. Compared to the random acquaintance surveillance, our EHR-
based strategy detects the early warning signal and peak timing much earlier. On average, the EHR-based strategy has 9.8 days of early
warning and 13.5 days of peak timings, respectively, before the whole population. For the urban network, the expected values of our
method are better than the random acquaintance strategy (24% for early warning and 14% in-advance for peak time). For a scale-free
network, the average performance of the EHR-based method is 75% of the early warning and 109% in-advance when compared with
the random acquaintance strategy. If the contact structure is persistent enough, it will be reflected by their history of infection. Our
proposed approach suggests that seasonal influenza infection records could be used to monitor new outbreaks of emerging epidemics,
including COVID-19. This is a method that exploits the effect of contact structure without considering it explicitly.
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Significance Statement:

Studies of network epidemiology suggest that central nodes in a network are at a higher risk of being infected early in an outbreak
and can, thus be identified as being disproportionately represented among previous infections. However, detailed data on interper-
sonal, physical contacts are difficult to obtain from most cities. Therefore, it is unclear which individuals would have a higher risk
of early infection in the real world. Here, we develop a new COVID-19 surveillance approach that uses historical EHRs of influenza
patients. Our method uses digital traces of influenza treatments to exploit the underlying structure of interpersonal contacts. Our
proposed approach suggests that seasonal influenza treatment records can be used better to monitor new outbreaks of emerging
epidemics, including COVID-19.

Introduction
A novel coronavirus (SARS-CoV-2) is thought to have emerged in
the last quarter of 2019 in Wuhan, China (1), and was declared
a pandemic by the World Health Organization (WHO) on 2020
March 11 (2). By 2021 September 29, 219 million cases of COVID-19
and 4.6 million deaths (3) were reported worldwide. Infectious dis-
ease surveillance systems provide critical information on the oc-
currence of infections and allow early detection of COVID-19 out-

breaks before they spread out of control. Surveillance of COVID-19
has relied mainly on reported cases, contact tracing, and projec-
tions (4, 5), coupled with syndromic surveillance systems to track
anomalous increases in COVID-like-illness (CLI) symptoms (5, 6).

In the past decade, public health agencies have benefited from
an influx of medical, epidemiological, and computational sci-
entists, who have developed model-based capabilities for em-
pirical analysis and mathematical modeling that capture the
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unfolding of epidemic outbreaks, their mechanisms, and their
response strategies. However, the increasing frequency of un-
expected emerging and reemerging infectious diseases demon-
strates the need for improved capacity to accelerate outbreak de-
tection in designing disease surveillance systems (7).

With more effective surveillance on more vulnerable individ-
uals as potential infection reservoirs, we can more effectively
uncover early signals of an emerging epidemic outbreak, allow-
ing expedite and optimal deployment of resources for its con-
trol. Decades of epidemiology research have demonstrated the in-
fluence of the contact network structure on epidemic outbreaks
by determining whether and when susceptible individuals are
infected (7–12). The surveillance strategies that map out indi-
vidual contact behaviors fall into those based on static contact
networks (13). Retrospective research has designed pioneer strate-
gies based on topological structures—for example, ref. (14) pre-
sented a simple social-network-based strategy (random acquain-
tance) in a college population by monitoring friends of randomly
selected students as the random acquaintance surveillance group
(SG). The random acquaintance SG is expected to exhibit a signal
2 weeks earlier than the random surveillance strategy (selection
of the surveillance subset randomly from the population). More-
over, ref.7 further investigate different centrality-based surveil-
lance strategies, showing how the complete knowledge of the net-
work of social interactions can be used to propose strategies that
outperform random and random-acquaintance strategies.

Medical, epidemiological, and computational scientists have
recognized the promise of network-based outbreak detection to
improve epidemic preparedness and response. However, few of
these strategies are applied to practical public health systems
due to the challenging implementation needed, additional huge
workforce, and economic cost to explore the generally unknown
contact network (15). The deluge of available digital data on Elec-
tronic Health Records (EHR) in public health systems offers un-
precedented opportunities to explore novel sentinel surveillance
strategies, which have been used for contact tracing in South Ko-
rea in the context of the COVID-19 epidemic (16, 17).

The aim of outbreak detection using sentinel surveillance is
to detect a signal for the emerging outbreak as early as possible.
This is similar to the well-studied problem of optimal vaccina-
tion on networks (18). Ref. (15) propose an innovative vaccination
method targeting previously infected individuals as reported by
individual infection history in EHRs. Previously infected individu-
als have a disproportionate probability of being highly connected
within networks and transmitting to others. This targeted strat-
egy is validated in contact network epidemiology simulations and
confirmed by empirical clinical data from Israel (15).

The current study introduces a practical data-driven surveil-
lance strategy to accelerate outbreak detection using the simple
logic of targeting the earliest infected individuals by retrospec-
tive analysis of historical outbreaks. We assume that the latest
influenza-like outbreaks would share closely similar networks of
contacts as COVID-19 spreads in its early stages throughout the
same region. Assuming that the past predicts the future in con-
tact networks and that the past was affected by network struc-
tures, our method exploits the network structure without ex-
plicitly mapping out the contacts. In that sense, the method is
network-free (even though the underlying processes are not).

Informed by historical influenza-like observations of individ-
uals, we use mathematical epidemic models to systematically
compare our proposed method with two well-studied surveillance
strategies (e.g. random acquaintance and most connected) in the
context of sentinel placement in networks where a COVID-19-like

disease is spreading. We quantify the timing and accuracy of the
information gained by these strategically chosen sensors, as well
as the robustness in the selection of nodes with respect to the
number of previous information (seasons) used and epidemiolog-
ical outbreaks over different effective reproduction numbers, Re.

Results
Surveillance strategy using EHRs of historical
influenza infections
We propose a new surveillance strategy that uses individuals es-
timated with high risks of having an early infection in a new out-
break. We assume that each individual who acquired influenza
infection in a previous influenza season would have a digital
record in the EHR system, providing key epidemiologic informa-
tion, including the potential infection time. Considering the effect
of short-term cross-strain immunity after an influenza infection
(23), we assume that each individual can be infected at most once
in a single influenza season. We assume that the EHR data are
available for multiple seasons.

Let η be the number of influenza seasons with EHR data, and
Re(i) the effective reproduction number of influenza infections in
each season i = 1, 2, . . ., η. Let η j be the number of influenza sea-
sons in which individual j has EHR records of influenza infections.
Let τ i

j be the time at which individual j acquires infection in in-
fluenza season i, according to the EHR records. With these defi-
nitions, we assess the expected risk of having an EHR record of
influenza infection in any influenza season for individual j as

〈Fη j 〉 j = 1
η j

(
Re (1) τ 1

j + Re (2) τ 2
j + · · · + Re

(
η j

)
τ

η j

j

)

= 1
η j

η j∑
i = 1

Re (i) τ i
j,

which essentially estimates individual j’s expected infection time
over all influenza seasons. The node with higher eigenvector cen-
trality (a measure of the influence of a node operationalizing the
recursive idea that central nodes are those who have many cen-
tral neighbors) has a smaller area under the curve of τ j and Re

(Fig. 1).
As in ref. (7), we consider the sentinels of surveillance nodes as

the top 1% of individuals with highest expected risks of influenza
infections over all seasons. Let EHR-Iη denote the EHR-based strat-
egy using η influenza seasons of EHR records. We test the surveil-
lance performance with η increasing from 1 to 10 seasons of EHR
records. Our main analysis uses EHR-I5 with five seasons of EHR
records (Fig. 2), because further increasing the number of EHR sea-
sons η will give similar results (Fig. 3).

Conventional network-based surveillance
strategy
We compare our EHR-based strategy with two conventional
network-based surveillance strategies, including (1) the most-
connected strategy, which uses the top 1% of hub individuals with
the highest numbers of network connections, and (2) the random
acquaintance strategy, which first randomly selects 1% of individ-
uals in the network and then uses one random acquaintance of
each randomly selected individual as the surveillance node. As in
ref.7, we use 1% of individuals in the network as the surveillance
nodes.
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Fig. 1. A schematic of the proposed surveillance strategy. (A) A schematic representation of the relationship between the effective reproduction
number (Re) and the time at which an individual acquire infection (τ j). Nodes with higher centrality are expected to have a smaller area under the
curve of τ j and Re, indicating their potential of acquiring infection earlier in an outbreak. (B) Informed by historical available observations of
individuals (A, B, C, and D) over (η = 2) seasons, the average historical vulnerability of of individual j, < Fη> j , is estimated from the historical
observations of infection time. Individuals, ranked by two factors (years of records and average infection time) from first to fourth, are selected
sequentially from top to bottom and from left to right in our proposed surveillance strategy. The red and blue bars denote the observed and average
infection timing of individuals across two historical seasons (e.g. 1 and 2), respectively.

Fig. 2. Performance of the most connected (red), random acquaintance (blue), and EHR-based (green) strategies. The EHR-based strategy here uses the
EHR records obtained from five historical seasons as an example. In the upper panel, the horizontal and vertical axes present the early earning (days)
and peak timing (days) measures for each strategy. In the bottom panel, the horizontal and vertical axes present the peak magnitude and situational
awareness measures for each strategy. Panels from left to right correspond to the results using urban, scale-free, and student networks, respectively. In
each panel, dots and error bars indicate the mean and standard deviation across 100 simulations of each strategy.

Simulation settings
We simulate the spread of SARS-CoV-2 and seasonal influenza in
contact networks, in which nodes denote individuals and edges
denote physical contacts. We use three different networks, includ-
ing the urban network of public wireless network usage (19), scale-
free network built with Barabási–Albert (BA) algorithm (20), and stu-
dents network of class attendance (7). The degree distribution has a

power–law pattern in the scale-free and urban networks and has
a Poisson-like pattern in the students network. Details of these
networks are specific in Methods. We use a susceptible-exposed-
infectious-recovered (SEIR) epidemic model to describe the his-
torical spread of seasonal influenza, and use an susceptible-
exposed-asymptomatic-symptomatic-recovered (SEAYR) model
to describe the contemporary spread of SARS-CoV-2 (Methods).
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Fig. 3. Average eigenvector centrality of surveillance nodes as a function of time (% earliest infected nodes). We compare the average eigenvector
centrality of surveillance nodes identified from each strategy including random acquaintance strategy, most-connected strategy, and EHR-based
strategies with increasing years of EHR influenza records. Panels from left to right correspond to the results using urban, scale-free, and student
networks, respectively. The horizontal axis, the timeline, denotes % earliest infected nodes. Each strategy identifies a collection of surveillance nodes.
For each EHR-I5 strategy, we run 100 simulations. For example, a simulation of EHR-I5, uses the first five sequential influenza-like simulations to select
the surveillance nodes. We evaluate the average eigenvector centrality of 1% nodes over the horizontal axis with each step as 0.01. We observe that
EHR-based performs better with increasing historical outbreaks involved. The average eigenvector centrality of surveillance subset EHR-based with
shorter history, lays between that of the acquaintance and most connected strategies.

We use the stochastic chain-binomial approach to simulate the
spread of these epidemics in contact networks.

Four criteria to evaluate the performance of
surveillance strategies
We consider the disease prevalence of SARS-CoV-2 as the pro-
portion of infected, individuals including exposed, asymptomatic,
and symptomatic individuals at a given time. Based on refs. (7, 21,
22), we use the following four criteria to evaluate the performance
of each surveillance strategy in monitoring the SARS-CoV-2 epi-
demic:

(1) Early warning. Let tEP
μ be the time at which the disease preva-

lence in the entire population (EP) reaches a predefined
threshold μ, and tSG

μ the time at which the disease preva-
lence in the SG reaches the same threshold μ. We consider
μ = 1%. The early warning criterion measures the time lag:
tEP
μ − tSG

μ .
(2) Peak timing. Let tEP

peak be the time at which the disease preva-
lence in the EP reaches the peak, and tSG

peak the time at which
the disease prevalence in the SG reaches the peak. The peak
timing criterion measures the time lag: tEP

peak − tSG
peak.

(3) Peak magnitude. Let rEP
peak be the peak value of the disease

prevalence in the EP, and rSG
peak the peak value of the disease

prevalence in the SG. The peak magnitude criterion mea-
sures the ratio: rEP

peak/rSG
peak.

(4) Situational awareness. The complement of the normalized
mean absolute error (MAE) of the time series of distance
prevalence between the SG and EP:

1 − min
λ

∑
t |xt − yt+λ|∑
t |xt − yt+λ| ,

which is minimized over possible time lags λ (7). Here, xt and yt

denote the disease prevalence of the simulated SARS-CoV-2 epi-
demics in the EP and SG at time t, respectively.

Main findings
The EHR-based strategy outstrips the random acquaintance strat-
egy in almost all four evaluation criteria. The performance of our

EHR-based strategy is comparable to that of the most connected
strategy (Fig. 2). In heterogeneous networks including the urban
and scale-free networks, the EHR-based strategy and the most-
connected strategy both provide good performance in the surveil-
lance tasks of early warning and peak timing. In all tested net-
works, the peak magnitude predicted by our EHR-based strategy
is much closer to that predicted by the most-connected strategy
as compared to the random acquaintance strategy.

Specifically, in the urban network (Fig. 2A and D), on average,
the EHR-based strategy can trigger an early warning 9.8 days be-
fore the whole population reaches a predefined threshold, 24%
faster than the random acquaintance strategy (7.9 days on aver-
age). On average, it has a peak timing, peak magnitude, and situ-
ational awareness of 13.5 days, 22.38 days, and 0.15, respectively.
When compared with the random acquaintance, the EHR-based
strategy shows a peak timing 14% higher, an overestimation of
the peak magnitude of 3.2 times and 44% decrease in situational
awareness. In the scale-free network (Fig. 2B and E), the EHR-based
strategy has an early warning, peak timing, peak magnitude, and
situational awareness of 6.3 days, 8.9 days, 1.82, and 0.54, respec-
tively. On average, the performance of our strategy shows a 75%
improvement in early warning, 109% overestimation in peak tim-
ing, 1.1 times in peak magnitude, and 75% decrease in situational
awareness compared with random acquaintance. In the student
network (Fig. 2C and F), the EHR-based strategy has early warn-
ing, peak timing, peak magnitude, and situational awareness of
3.61 days, 2.68 days, 2.08, and 0.63, respectively. When compared
with the random acquaintance, it has 7% less in early warning,
87% overestimation in peak timing, 1.15 times in peak magnitude,
and 9% decrease in situational awareness.

To explain the performance of the surveillance strategies,
we explore the subsets of individuals selected by these surveil-
lance strategies in terms of their eigenvector centrality. Figure 3
suggests that the EHR-based strategy appears to select nodes
with higher eigenvector centralities. Increasing the number of in-
fluenza seasons used in the EHR-based strategy facilitates the
identification of central nodes in the network. Lastly, EHR-based
selection of nodes, is more similar to the selection made by the
most-connected strategy, as we increase the number of historical
outbreaks (Figure S4, Supplementary Material).
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Discussion
From contact network epidemiology, we know that central nodes
are at higher risk of being infected early in an epidemic and can,
thus be identified as being disproportionately represented among
the previously infected in seasonal diseases (for instance, in-
fluenza, Chlamydia, and Lyme disease) (15). Building on the avail-
ability of EHR systems, we propose a novel surveillance strategy;
selection based on historical records of infection, which can be
implemented in the context of sentinel placement for COVID-19
surveillance, denoted as the EHR-based strategy. The advantage
of this approach is that if the contact structure (or risk behav-
ior based on the connectivity of individuals) is persistent enough,
then it will, on average, be reflected by the history of infection of
each individual. Thus, this method exploits the effect of contact
structure without the knowledge of the network itself—which is
both difficult and relies on the assumption that the structures are
persistent.

Through epidemic simulations in static contact networks, we
found that this novel strategy can accelerate the epidemic out-
break detection process, competing with the other static-network
strategies in terms of practicality and early warning. To assess the
centrality dynamics of nodes selected by the EHR-based strategy,
we calculate and compare (computationally and theoretically) the
eigenvector centrality of the nodes selected by each strategy on
both empirical and synthetic networks. We find that our proposed
surveillance strategy is competitive when compared with other
strategies and depends on the number of historical outbreaks and
the public health objective.

We studied the relationship between the selection of nodes us-
ing the EHR-based strategy and the optimal theoretical surveil-
lance subsets (see Method). Following percolation theory on net-
works (7, 23), where an SEIR infectious disease is spreading, we
calculate analytically the optimal surveillance subset. We show
that the selection of nodes in the surveillance subset when apply-
ing the EHR-based strategy, and the optimal theoretical selection
of nodes (those with the highest eigenvector centrality) tend to be
similar, as the number of historic records increases.

In the context of an actual new emerging or reemerging infec-
tious disease (e.g. COVID-19), the EHR-based strategy can be ap-
plied using historical records of a different (related) disease. The
ranking of individuals can be learned from the knowledge of other
infectious diseases belonging to the same spatial scenario, con-
currently or sequentially. For example, the transmission dynamics
learned from the surveillance of seasonal influenza can be used
to estimate the outbreak risk of varicella in Taiwan (24).

Although we believe our qualitative results are robust and im-
plementable, we need to address a few simplifying assumptions.
First, our model does not account for the reinfection of influenza
within a single flu season. The temporal cross-strain immunity is
estimated with a short duration according to the real-world data
(e.g. 42 days in the US (25)). However, if the circulating strain re-
mains the same during two consecutive influenza seasons, the
prior immunity gained in the past season may protect the previ-
ously infected individuals from the reinfection of the same strain.
To reduce this potential bias, we suggest excluding these years.
Second, our proposed strategy identifies a small proportion of the
population as surveillance nodes for early detection of new out-
breaks. Our identified surveillance individuals may not be rep-
resentative of the EP, and hence may not be suitable for other
surveillance purposes such as estimating the final attack rate or
population prevalence. Third, the accessibility of EHR data could
be limited by privacy-related restrictions, which could narrow the

applications of the method. Fourth, the basic reproduction num-
ber may not be estimated directly in an influenza season. How-
ever, it could be approximated using the effective reproduction
number, vaccine coverage, and vaccine efficacy. Fifth, it is possible
that not all infected individuals will have their influenza records
registered. We perform a sensitivity analysis by reducing the prob-
ability of seeking treatment and having an influenza record in the
EHR for each infected individual P (health-seeking) from 75% to
25% (Figures S1 to S3, Supplementary Material). We find that the
EHR-based strategy does not work well when P (health-seeking)
reduces to 25%.

We conclude that the proposed EHR-based strategy for sentinel
surveillance selection is competitive with other existing surveil-
lance strategies in networks. This strategy, in general, could prove
useful to public health policy makers, by offering a practical and
robust alternative without the knowledge of individual contact
behaviors, especially when a long enough history of EHR in public
health systems is available. In this study, we provide a new method
for surveillance of populations, which can also be used synergisti-
cally with network-based strategies. Additionally, our EHR-based
strategy could be extended to consider the case of targeted testing
and targeted vaccination.

Materials and Methods
Modeling the historical spread of seasonal
influenza in contact networks
We simulate epidemic outbreaks using a stochastic chain-
binomial model in contact networks with nodes as individuals
and edges as interpersonal physical contacts. The degree of a node
is the number of other nodes connected to it via its edges.

For seasonal influenza, each individual has four states: suscep-
tible (S), exposed (E), infectious (I), or recovered (R). The trans-
mission rate of the disease is β. Node i will remain exposed for
1/σ days and infectious for 1/γ days, after which it will recover.
The basic reproduction number of a disease, denoted R0, demon-
strates the expected number of secondary infections caused by a
single infection in an entirely susceptible population, commonly
used to indicate the epidemic growth rate, which is approximately
equal to the effective reproduction number (Re, the average num-
ber of secondary cases per infectious case in a population made
up of both susceptible and nonsusceptible hosts) given most in-
dividuals are susceptible in our simulations. We fix σ and γ for
every simulation to 4 and 7 days, respectively, within the range of
estimates for common respiratory diseases, including influenza
(26). The disease prevalence is counted as the number of people
in E over time. Let R0 follow the distribution of Triangular(1.12,
1.25, and 1.33) according to the seasonal influenza epidemics over
countries from 2000 to 2011 (27).

Modeling the contemporary spread of
SARS-CoV-2 in contact networks
To test the performance of the proposed strategy on COVID-19
scenarios, each individual has five states: susceptible (S), exposed
(E), asymptomatic (A), symptomatic (Y), or recovered (R). Node i
will remain exposed for 1/σC days, after which it will become in-
fectious for 1/γ C days as asymptomatic and symptomatic with
probabilities of 1–psym and psym, respectively, after which it will
recover. The infectiousness of asymptomatic individuals is likely
to be different from those with symptoms, perhaps by shedding
lower quantities of the infectious agent and having more poten-
tial contacts with others (28). And asymptomatic individuals have
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been considered with obvious differences of infectiousness, in
contrast with others with symptoms (29). The relative infectious-
ness of an asymptomatic individual (A) is ω. The transmission rate
of the disease is ωβC and βC for asymptomatic and symptomatic
states, respectively. We fix R0, σC, γ C, ω, and psym for every simu-
lation to 2.5 (1, 30), 1/5 days (31), 1/2.5 days (32), 0.5 (32), and 0.75
(33), respectively. In contact networks (with arbitrary degree dis-
tributions but random in any other aspect), R0 correlates with the
transmission rate, as (34)

R0 = β

( 〈k2〉 − 〈k〉
〈k〉

)
, (1)

where 〈k〉 and 〈k2〉 denote the mean and mean square of degree.
Following the static-network strategies’ evaluation (7), given a
specific R0, we use Eq. 1 to solve the corresponding transmission
rate β for influenza. For COVID-19 scenarios, we estimate βC by

β

psym+(1−ωpsym ) . We start simulations in scale-free and student net-
works with one randomly sampled seed to be exposed, while ur-
ban networks have 100 seeds. We investigate various epidemic
outbreaks in networks to reflect the transmission variation of in-
fectious disease (7).

Contact network datasets
In this study, we consider the spread of epidemics in a networked
population, in which individuals in the population are connected
through contact networks (7, 35–37). Following ref.7, we use the
following three networks in which the interpersonal contacts are
described by unweighted connections. We consider these three
networks to explore the influence of their distinct topological
properties.

(1) Urban network. This colocation network consists of 103,425
users (i.e. nodes) of the Île Sans Fil free public wireless net-
work in Montreal, Canada. In this network, the connections
represent the concurrent hotspot usage (19).

(2) Scale-free network. This topologically heterogeneous network
is generated using the seminal BA algorithm (20).

(3) Student network. This network consists of 4,634 students (i.e.
nodes) of the Engineering Department from the Universidad
de Los Andes in Mérida-Venezuela. In this network, the con-
nections indicate that a group of students shared at least
one class during the fall 2008 semester (7).

The degree distribution shows a power–law pattern in the
scale-free and urban networks (20, 19), and shows a Poisson-like
pattern in the students network. Furthermore, the urban network
has a strong community structure (19).

Centrality dynamics of our strategy
We use the analytical method developed in ref.7 to study the re-
lationship between the surveillance nodes selected in our EHR-
based strategy and the analytically derived optimal set of surveil-
lance nodes. We use an SEIR-like epidemic model to describe the
spread of seasonal influenza in a network of size N, in which β de-
notes the transmission rate per infectious contact and γ denotes
the recovery rate. According to the percolation theory developed
in refs. (7, 23), during the initial outbreak, the probability that each
node acquires infection at time t is approximated as

x(t) = e(βκ−γ )tυ , (2)

where κ is the leading eigenvalue of the adjacency matrix of the
network, and v the corresponding eigenvector. This formula sug-
gests that nodes with larger eigenvectors are more likely to have

an earlier infection. Therefore, ref. 7 suggests that the optimal set
of surveillance nodes need to include those nodes with highest
eigenvector centralities.

Let MEHR-I be the set of surveillance nodes used in our EHR-
based strategy, which are determined by historical EHR influenza
infection records. During the initial outbreak, the eigenvector cen-
tralities for the surveillance nodes in our EHR-based strategy is
given by

cEHR−I = v · 1EHR−I

MEHR−I
≈ v · x (t)

MEHR−I
= e(βκ−γ )tυ2

MEHR−I
,

where 1EHR−I is an indicator vector with elements being 1 if the
corresponding nodes are chosen as surveillance nodes in the EHR-
based strategy and vice versa. Our EHR-based surveillance strat-
egy can identify high-risk nodes with largest eigenvector central-
ities, as indicated by the large average eigenvector centralities
cEHR−I for nodes acquiring earliest infections (Fig. 3).

Nodes are infected and selected as time advances. During the
initial outbreak, cEHR−I is increasing with time via selecting nodes
with high eigenvector centralities. After that, low eigenvector cen-
trality nodes will be infected and selected (7), and thus, the EHR-
based SG tends to be the optimal by selecting those nodes infected
earlier than other nodes, which tends to have higher eigenvector
centrality.

Following ref.7, let τEHR−I and τ be the times at which the EHR-
based SG and the other SG with size M reach the same prevalence
threshold p. Let 1 be the indicator vector of dimension N, denoting
the nodes selected by the EHR-based strategy. As thus,

p = e(βκ−γ )τEHR−I v · 1EHR−I

MEHR−I
= e(βκ−γ )τ v · 1

M
.

The timing of early warning achieved between the two SGs of
the EHR-based and the other SGs, denoted � tEHR−I = τ − τEHR−I,
implies

� tEHR−I = 1
βκ − γ

ln
( cEHR−I

c

)
,

where cEHR−I = v · 1EHR−I/MEHR−I and c = v · 1EHR−I/M are the av-
erage eigenvector centralities in the two surveillance subsets, re-
spectively. The early warning timing between the other SG and
the EHR-based surveillance subset is determined by the ratio of
their average eigenvector centralities. Therefore, during the initial
outbreak, high eigenvector centrality nodes become infected with
higher probability. After this initial regime, where most nodes with
the highest eigenvector centralities have been infected, the infec-
tion spreads to nodes in the periphery of the network, i.e. nodes
with low rankings of eigenvector centrality. Therefore, the average
eigenvector centrality of all infected nodes decreases smoothly as
time increases.

Considering an individual j in season η j, the probability,
x(t j, η j ), of being infected at time t j is proportional to

θ (t j, η j ) = log
(

x(t j, η j )

γ v

)
= R0

(
η j

)
κt j − t j.

The ratio of θ (t j, η j ) in two seasons (i and j) implies

θ (ti, i)
θ (t j, j)

= R0 (i) κti − ti

R0 ( j) κt j − t j
∼ R0 (i) ti

R0 ( j) t j
∼ Re (i) ti

Re ( j) t j
.

Hence, in our proposed strategy, the historical vulnerability of an
individual is a combination of τ i

j and R0(i) (or Re(i)) the time of
individual j in season i.
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